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Abstract 

A systematic investigation of all possible horizontal symmetries acting on four gen- 

erations of quarks in a minimal left-right symmetric model is carried out. There 

are only two consistent models with realistic constraints on the quark masses and 

mixing angles. It is shown that 2, is the unique symmetry group leading to these 

models. The fourth generation quark masses rnb, and rnt, are constrained to be (A) 

mb/mt N mb,/mt,, I m,/m, N (mb + mbv)/(mt + ml,). Thus, Model (A) predicts 

mc, rnb, < 43 GeV whereas Model (B) has rnbl < 58 GeV. The two models differ in 

the mixing of the fourth generation into the first three. A crucial test which can 

distinguish the two models is a direct measurementof the mixing matrix element 

1 V, j-Model (A) predicts it to be - lo-‘, an order of magnitude smaller than the 

prediction of Model (B). 

e Operated by Universities Research Association Inc. under contract with the United States Department ot Energy 
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I. Introduction 

The replication of fermion families is one of the least understood aspects of 

present day particle physics. The discovery of the top quark will complete the third 

generation of quarks and leptons in the standard model menu. However, there is 

no convincing argument that it will be the last entry. It is then natural to consider 

the possible existence of a fourth generation of quarks and leptons. This possibility, 

although not new, has been the subject of vigorous discussions lately[l]. The recent 

measurement of B - B mixing by the ARGUS collaboration[2] will only strenghten 

the case for a fourth generation if the top quark is indeed discovered in the mass 

range 25-50 GeV[3]. 

In this paper, we shall take the possible existence of a fourth generation seriously. 

Within the framework of the standard model, this only proliferates the number 

of free parameters, since the model has all the fermion masses and mixing angles 

arbitrary. However, meaningful relations among the quark masses and mixing angles 

can be obtained by resorting to additional symmetries acting in the family space. 

These ‘Horizontal Symmetries’ are essential if the relations are to be stable under 

radiative corrections. Although the number of free parameters can be reduced 

considerably in this approach, we still lack convincing arguments ss to what the 

horizontal symmetry should be. Therefore, a general investigation of all possible 

horizontal symmetries will serve to be of great value. Such investigations have been 

carried out in the literature for the case of two and three generations[4-61. Here we 

propose to extend them to the case of four generations. 

An aesthetically pleasing and phenomenologically viable alternative to the stan- 

dard model is left-right symmetric gauge theories based on the gauge group SU(2)L 

x SU(2)n x U(1) [7]. These theories have been shown to be very sucessful in ob- 

taining natural relations between the quark masses and the mixing angles[8]. The 

invariance of the Lagrangian under space inversion naturally pleads to hermitian 

Yukawa coupling matrices, which is a considerable simplification. In this paper, 

we shall confine to a left-right symmetric model with a minimal Riggs sector and 

investigate the effect of all possible horizontal symmetries acting on the four gener- 

ations of quarks. The analysis can in principle be extended to the leptonic sector 

as well, but lacking the experimental information on the leptonic mixing angles and 

the neutrino masses, we shall not pursue it here. Ecker, Grimus and Konetschny[G] 
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have carried out a general analysis of all horizontal symmetries within the frame- 

work of such a miniial left-right symmetric model for the case of two and three 

generations of quarks. These authors show that in either case there is essentially 

one model which leads to phenomenologically acceptable predictions on the quark 

masses and mixing angles. Furthermore, the cyclic group 2, was shown to be the 

unique symmetry group that leads to these predictions. 

The number of possible symmetry groups proliferates considerably while going 

from three to four generations. However, we have been able to show that the 

minimality of the Higgs sector when combined with the requirement that none of the 

generations decouple from each other implies that one can choose a basis in which 

the horizontal symmetry is essentially Abelian, thus simpliimg our analysis. We 

show that there are only two models with realistic predictions on the quark masses 

and mixing angles. Remarkably, 24 is again the unique symmetry group which 

leads to these models. In both the models, the masses of the top and the fourth 

generation quarks (t’, b’) are constrained to be mt, rnb, ZG 50 GeV, rntt X 180 GeV. 

The two models differ in the mixing of the fourth generation into the first three. 

In Model A, the fourth generation mixes preferentially with the second, whereas in 

Model B, it mixes with the third generation. Another test which could distinguish 

the two models is the mixing matrix element 1 Vd 1 - Model A predicts it to be 

w lo-‘, an order of magnitude smaller than the prediction of Model B. 

In the next section, we describe the minimal left-right symmetric model in some 

detail and begin investigating the action of possible horizontal symmetries on the 

four generations of quarks. There we arrive at the two realistic models A and B. 

In Section III, we analyze the special case of degenerate Yukawa coupling matrices 

and assert that they do not lead to realistic models. The phenomenology of Models 

A and B are worked out in Section IV. In Sections V, we conclude. A proof that the 

horizontal symmetry can always be chosen to be Abelian in the miniial model is 

given fin the Appendix. 

II. Horizontal Symmetry and a Minimal Left-Right Model 

We shall assume the gauge group to be SU(3)o x SU(2)z x SU(2)n x U(1). The 

left-handed and the right-handed quarks & and $a transform under the group ss 
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(3, 2, 1, l/6) and (3, 1, 2, l/6) multiplets respectively. Fermion masse8 arise 

upon spontaneous symmetry breaking through their Yukawa couplings to a Higgs 

multiplet 1$(1,2,2,0). Additional Higgs scalars which do not couple to the quarks are 

also introduced in order to break sum x U(1) down to V(l), at an energy scale 

greater than a few TeV. The model is miniial in the sense that only one +(1,2,2,0) 

field is introduced. 

In addition to the Higgs field d, the charge conjugate field 4 = rr@rr also 

couples invariantly to the fermions. The most general Yukawa coupling to the four 

generations of quarks is defined by 

LY = 5 ($Li+rlij$Rj + $Li&lij+Rj) + h.c. (24 
ij=l 

When the neutral components of the d field acquire vacuum expectation values, 

which we parametrize as 

-Cd>= (2.2) 

thii leads to the mass matrices 

Mu = url + wT2 

Md = wrl+dr2 (3.3) 

for the charge 2/3 and -l/3 quarks respectively. 

By virtue of the U(4) x U(4) symmetry of the quark gauge couplings, the most 

general parity operation acting on the quark fields has the form[6] 

tiL -+$R , $R--‘s$L , (3.4) 

where S is a 4x4 unitary matrix Under parity, r$ + 4’ = no with ] r) ]= 1. By 

redefining the field 4, we may set q = 1, in which c8se the invariance of (2.1) under 

parity implies 

ri=l?$ of [l?i,S]=O i=l,2. (2.5) 

In a basis where S is diagonal, Tr and Pr and therefore Mu and Md will be block- 

diagonal dependiong on the degeneracy of S. If none of the generations decouples 
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from the rest, S should be completely degenerate, i.e., 

s = e”l. w3) 

Absorbing the phase factor into the definition of ri one can restrict oneself to 

hermitian I’;. 

Now consider an arbitrary horizontal symmetry group H (discrete or continuous) 

represented by unitary transformations on the quark fields as well ss on the Biggs 

field 4. 

ti; = KL (9) +LI dJk = KR (g)!bR, d'= eiu% (2.7) 

for each geH. Invariance of the Yukawa coupling under this transformation implies 

KLrlKR = eviarl , 

Kir2KR = e’T2 , (2.8) 

or using the hermiticity of JI’i, 

[rj,&]=[rf,KR]=o (i=1,2). (2.9) 

This relation will prove to be quite powerful in eliminating many possible horizontal 

symmetries. 

Before we proceed, we observe that by virtue of eqs. (2.8) and (2.9), 

[K~, M,MJ] = [ICY, M~MJ] = VW rlr2KL(eZia - 1) + h.c., 

[~RJ~X!] = [KR,M~MJ = VW rlrz~R(e-z'"- I) +bc. . (2.10) 

If ezin = 1, all the commutators above vanish. But then in a basis where K~(or Kn) 

is diagonal either some flavors decouple or KL (and Kn) are completely degenerate 

leading to no constraints on the mass matrices at all. Hence, the case eZiP = 1 is 

‘trivial’ and will not be tolerated in the subsequent discussions. 

If both f: and ri are four-fold degenerate, I’: = C,% and it follows that 

[Mu*, M,JM,$ = 0 leading to a trivial quark mixing matrix. Hence at least one of 

the Pj, say r:, has to be not four-fold degenerate. We are then led to consider the 

following cases: 
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1. I’: nondegenerate 

2. Pi two-fold degenerate 

3. I’: twice two-fold degenerate 

4. l?: three-fold degenerate. 

Consider the case of nondegenerate T :. Due to eq. (2.9), there exists a basis where 

Tr, KL and Kn are simultaneously diagonal. 

rl = diagh, mr a, g4, 

KL = &g [#I, ei@a, ,@a, ei@d] , 

KR = diag [ei71, @, ei7s, @4] . 

(2.11) 

Zn this basis, at least three of the off-diagonal elements of Tr should be nonzero in 

order that none of the generations decouple. Denoting Prij by h+j we can choose 

them to be 

(A) h h ha # 0 or 

(B) hrz hrs &I # 0. 

Any other choice can be reduced to one of the above by a permutation of the 

family indices. 

Combining eq. (2.8) with (2.11) we obtain 

gii = eib-Rif7i) 
4% P 

hj = ei(u+Ri-“)~ij . 

For case (A), h14 hr, hM # 0 implies 

,Q% = eiRa = ,iRr 

ei71 = ei73 = ei-fa I 

ei74 = &+h-Rd , 

(2.12) 

(2.13) 
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Consequently 

rl = &g [gll ei(271-8t-8d, g22 ei(h-8t-h), g33 ,ih-81-h), g,, ei(2?1+P1-3R~)] . 

(2.14) 

Clearly if eiBl = eie*, f’r = 0 for nontrivial symmetry which means a trivial &ing 

matrix. Therefore eial # $a*, in which case the second of eq. (2.12) implies that 

all elements of Pr besides h14, hz4, hJ4 and their complex conjugates are zero. For 

example, 

h ,, = e'(81-84)h,, 

= 0. 

Furthermore, from eq. (2.14) it follows that 

eih-R~-R4) = 1 

for a realistic mess spectrum. Hence we arrive at the following matrices for case 

(4: 
PI = diag [g II, mr !l33> g44e*ia 13 

(2.15) 

If eliP # 1, g** = 0 in which case 

1 detM,~l=l detMd 1 or 

m, m, mt m: = md me mb m;. 

Such a mass relation is inconsistent with the experimental lower bound of 22 GeV[9] 

and the upper bound of about 300 GeV from the measurement of the electroweak 

p parameter[lO] on the heavy quark masses. Hence e*ia = 1 is required. We shall 

call the matrices of eq. (2.15) with this choice of a Model A. 



-7- FEBMILAB-P&87/101-T 

The simplest symmetry group which yields the matrices of eq. (2.15) is the 

group Z,. Alternately, any symmetry group which reproduces Model A should have 

Z, as one of its subgroups. Under Z, the transformation properties of the quark 

and the Higgs fields may for example be(ll] 

KL = diag[l, 1, 1, -1) , 

KR = diag(i, i, i, -i] . 

(2.16) 

We shah analyze the phenomenological consequences of thii model in Section IV. 

Now consider case (B) with hl2 h23 h% # 0. From eq. (2.12) it follows that 

,C% = eiRr , ,ik = ,ih 
9 

ei71 = ei7r , ei-h = ,i74 = ei(71+81-82) 
1 

#x = ei(7z-Rd 
I 

(2.17) 

and consequently 

(2.18) 

For ei@l = e’pa,r, is identically sero for a nontrivial symmetry. Hence ci@l # &‘a 

in which case eq. (2.12) implies that only hr4 can be nonsero besides h12, hz3, h%. 

For example, 

h 13 = cw-Rllh,3 

= 0 

and so on. Furthermore, from eq. (2J8) we have 

ei(271--Bt-R2) = eih+R~-3B.) = 1 (2.19) 

or else I’r will be degenerate contrary to our assumption. Thus, we arrive at the 

matrices for Model B. 
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I’1 = diagh ozz, cm ml , 

0 hz 0 hl4 

I-2 = (2.20) 

It is remarkable that the simplest symmetry group which produces these mass 

matrices is again Z, with the following assignment:[ll] 

,ia = . ’ 9 

KL = diag[i, 4, i, -i] , (2.21) 

KR = diag[l, -1, 1, -11 . 

Such a model has been studied recently by Mohopatra and Mohopatra.[12) In Sec- 

tion IV we shall come back to the phenomonology of this model and compare it 

against Model A. 

III. The Case of Degenerate I’: 

In this section we turn to the remaining possibility that Ii is degenerate. As 

discussed before, we have to consider three cases - I?: two-fold, twice two-fold or 

three-fold degenerate. First of all, we note one simplification. In the previous 

section, we analyzed the case of nondegenerate I:, allowing for an arbitrary Pi. 

Therefore, while discussing degenerate I’:, we may safely exclude the possibility 

that Pi is nondegenerate since it will not give any new model. (Note that the 

problem at hand has a symmetry I1 ++ Pr,q5 ++ 4.) Next we state a very useful 

lemma. 

Lemma: In the minimal model, the requirement that the horizontal symmetry 

and the resulting mixing matrix be nontrivial and that none of the generation 

decouple from each other implies that there exists a basis in which KL and KR are 

simultaneously diagonal. 

The proof of the lemma is somewhat tedious and is given in the Appendix. The 

lemma means that the horizontal symmetry group can be chwen to be Abelian. 
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This brings in considerable simplifications in our analysis. In a basis where Kr, and 

KR are diagonal, if Pi is two-fold degenerate, PI has the form 

0 Q12 0 0 

r, = g:2 0 0 0 

L I 

0 0 g33 !I34 (3.1) 

0 0 4% 944 

up to a permutation of the family indices. A twice two-fold P! is obtained by setting 

gs4 = 0 in the above. Similarly, a three-fold degenerate I’: is possible only if 

rl = diag[O, 0, 0, ia41 . (3.2) 

A four-fold degenerate Pi implies Tr = 0. These restricted forms of the matrices 

follow simply because the nonzero elements of the matrices are unrelated if the 

horizontal symmetry is Abelian.[l3] The csse of four-fold degenerate Tz is trivially 

excluded from the above arguments. Similarly if Pi is three-fold degenerate some 

generation will necessarily decouple from the others due to Eq. (3.1) and (3.2). 

Hence we are left with the followings possibilities: 

1. T: and Ti twofold degenerate 

2. Ij two-fold degenerate and Pi 2 + 2 degenerate 

3. I’: and I?: 2 + 2 degenerate. 

Setting ga, = 0 in eq. (3.10) and allowing for all possible permutations of the family 

indices we see that in case (3) two generations decouple from the remaining two 

which is unacceptable. Furthermore, case (2) can be obtained ss a special case of 

(1). Hence our task reduces to analyzing the matrices 

/ / 0 0 912 912 0 0 0 0 

s;2 s;2 0 0 0 0 0 0 

rl = rl = 
0 0 0 0 93.3 93.3 934 934 

\ 0 0 oa iI44 \ 0 0 oa Srr 
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(0 0 0 h \ 

0 hn hm 0 

r2 = 
0 h;3 hm 0 

\ h;, 0 0 0 , 

Here we labeled the family indices so that decoupling of generations does not occur. 

(3.3) 

So far we have not used the invariance of the Lagrangian under the horizontal 

symmetry. Since 

KL = diag [#a, ,@, ,ih, &L] , 
KR = &g [@, @, ,+a, &fd] , (3.4) 

we have from Eq. (2.8) 

gij = eib-Pi+7j) !Jij 9 (3.5) 

h, = ,-ib+Pi-7j)h, . (3.3) 

We immediately see that 

gijhJj(l - ezia) = 0 (no summation) . (3.7) 

For nontrivial symmetry, we need gijhj = 0. Consequently we can set 9% = 0 

without loss of generality in Eq. (3.3) and consider the cases gu = 0 and g44 # 0. 

If in Eq. (3.3) grz = 0, then g&4h23 # 0 so that no generation decouples. If 

hl4 = 0, g12g34h23 # 0. For nonzero grz~and hid, either gs4 or hu has to be nonzero 

as well in order that all generations mix. We shall analyze these four possibilities 

one by one. 

(4 

012=Or add23 # 0 . 
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From Eq. (3.5)-(3.6) we have 

,ih = ei(71-3al, ,&% = &+2m), ,i& = ei(ll-m) I 

(3.8) 
&a = &1+3a), ,.+a = &(.cz-la), &4 = &%+a) 

Furthermore, 

g14 = ew-71+6a) Q24 , 

g33 = ei(71-81-39) 933 

g44 = gV1-71+3rr) 944 

h 22 = ei(h-11+6m)h22 

h 33 = ei(71-h%-6m)h53 . 

P-9) 

Since 924 = gss = 0, ei(8~-7~+6al g 1, ei(71-p1-3a) # 1. Thii implies that gc( = 

h22 = h33 = 0 leading to decoupling of generations. 

(ii) 

h4 = 0, gng3& # 0 . 

In this csse from Eqs. (3.5)-(3.6) we have 

Pa = ,@4 = ,i(-~~+~) , eiRa = &%-2m) (3.10) 

@l = @ = ,i(&-a) , &fs = &1+2u) 

Then from Eq. (3.5) we see that 914 cannot be kept zero consistently. Hence this 

csse is disallowed by symmetry. 

(iii) 

gnga&u # 0 . 

Eqs. (3.5)-(3.6) imply 

&b = ei(71+.) , ,@r = eiL91+2a), e'B4 = ei(7,-.) 

(3.11) 
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and consequently 

gllei(71-#1+al 912 g13eihl-bl-d 0 \ 

s:2 
g22ei(P~-7~-al 0 g24e’(Br-11+4 

r, = gi,e'(71-81-a) 0 g33ei(7~-81-3u) 
7 034 

0 g;4ei(Bt-71+4 
!44 

g44ei(Bt-72+34 

\ / 

r2 = 
0 h22ei(h--?~-3~.) h23c-4i= h24ei(h%-71--) 

h;3ei(71-81-3~) 43e-4iu h3Jei(7n-BI-6-) 0 

h:, h;4ei(Bl-7~--) 0 hr4&%-71+-) 

0 h13ei(71-81-3a) hlr \ 

/ 

, (3.12) 

where the vanishing entries result from eZia # 1. Now since h13 = 0, ~~(~l--81-~~) # 1 

which implies g44 = 0. As g2, = 0, c~(P~-“~+~) # 1. Then if hz3 # 0, e-lip = 1, 

which means hz2 = hs = 0 leading to generation decoupling. Hence hz3 = 0 in 

which case one can consistently choose 

rl = 

0 912 cl 0 

912 a 0 0 0 

0 0 0 s34 

0 0 !J;r 0 
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lo 0 0 h4 ’ 

0 h22 0 0 

r2 = 
0 0 h33 0 

\ hi4 0 0 0 ) 

We shall analyze the mass spectrum of thii model later in thii section. 

(iv) 
gnhh3 # 0. 

Analysis similar to the above yields 

and 

rl = 

r2 = 

,iBa = ei(2,+a) , eih = eW-2a), ,iB4 = ei(71-a) , 

ei7a = eiVt-a), ei7r = &l+W, ei74 = ,iL%+m) . 

gl,ei(+81+-n) 912 g13ei(71-8,+30) 0 

!42 
g22eiWl-71-a) 0 g24ei(B~-7~+=) 

g;3ei(71-i%+3n) 0 g33ei(-n-B1+Sa) g34e4iu 

0 g;4ei(B1-7t+=) g;4e4ia guei(B1-7~+3a) 

hll&l-81-=) 0 h13&-B1+-) hr 

0 h22ei(Bl-71-34 h23 h24e’(Bl-71-n) 

hi3ei(Yt--8,+a.) h' a3 h33ei(71-i%+3~) 0 

hi4 h;4eik%-71-a) 0 h,,ei(8rm+=) 

(3.13) 

(3.14) 

1 (3.15) 
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Since gra = 0, ei(ll-@l+3Pl # 1 implying that h22 = hs = 0. As hz4 = 0, ei(fl,-TIWa) # 

1 leading to g31g44 = 0. If grr = 0 the model is again with decoupled generations. 

For g4, # 0, ga = 0 a consistent model emerges, but it is a special case of the 

matrices Eq. (3.13) and will not be treated separately. 

To summarize, we have shown after some tedious manipulations that for the case 

of degenerate Pi, there is essentially one model given by the matrices of Eq. (3.13). 

After a permutation of the indices 1 ++ 3,2 u 4, the resulting mass matrices are 

M, = 

w’hs YJ34 0 0 

w;4 0 w’h 0 

0 W’hi4 0 "$a2 

0 0 242 w'h 

Md = M,(u * w) . 

, (3.16) 

If ha3 = 0 this is of the Fritzsch type. It has been shown in Ref. 14 that this case 

leads to three mass relations 

mbmb’ -d!z!E&,“m~~~~~ 1: (“,:“,“;:)! 
mtmtf 

mdm’ mbm)’ 
z 2-, 

mm: mtw 
(3.17) 

which are unrealistic. The case h33 # 0 will be analyzed by treating the fust 

generation quark masses m. and rnd as perturbations. In the lit m, = md = 0 

from the determinants of MU and A&, disallowing the possibility that v = w (in 

which case Ai, = Md), we have 

Ql2Q34 = 0 , 

hzah 1 h 12= 0 . (3.18) 

If 912 = hzz = 0 or 034 = hsa = 0 we have the following mass relations in this limit: 

mbt - mb 
z 

rnt, - rnt ( (3.19) 
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These relations predict a t’ mass below the experimental lower bound of 22GeV. If 

Eq. (3.17) is satisfied by choosing g% = hl4 = 0, we see that 

~fi _ mtl - mt N 
m. mv-mb 

(3.20) 

which are also not realized in nature. For g12 = h14 = 0, one obtains the unaccept- 

able relations 
E c (!g N (EC?)+ . (3.21) 

Finally, if g= = h22 = 0 or g12 = hu = 0, m, = mt and m, = mb will follow. Hence 

the mass matrices in Eq. (3.15) do not lead to realistic models. 

IV. Phenomenology of Models A and B 

Having established that even with an arbitrary horizontal symmetry there are 

only two realistic models (Eq. 2.15 and 2.20), we now turn to the phenomenological 

consequences of these two models. Model A (Ref. Eq. 2.15) corresponds to the 

following msas matrices after a permutation of family indices: 

Mu = 

gnu huw’ 0 0 

hi,w’ guu h&w’ hi,w’ 

0 h-w* gsv 0 

0 hz4w’ 0 g22v 

Md = itfy(U ++ W)~ . 

(4.1) 

In analyzing the predictions of the model on the quark mixing matrix, we shall 

make the following approximations. First of all we assume CP invariance so that 

the Yukawa couplings hij and the vacuum expectation values v and w are real. 

In left-right symmetric models the observed CP violation can be explained by the 

right-handed currents alone. With this assumption the mag matrices becomes 
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hermitian. The ratio of the vacuum expectations values is given by 

n=y=md+m#fmb+mbl 
v m,+m,+mf+mtn’ 

(4.3) 

If we identify the 6rst row with the 6rst generation, second row with the second 

and so on in the matrices of Eq. (Q.l)(other possible identifications will be discussed 

later), in the limit of neglecting the Srst two generation masses we have the mass 

relation 
n=mr=% 

mt rnf, ’ (4.3) 

barring unnatural cancellations. This relation will get only small corrections when 

the first two generation mssses are turned on. Since the mixings are known to be 

small and since they arise through hj in Eq. (4.1) we shall assume the h’s to be 

small compared to the g’s. 

Due to eq. (4.3), n << 1 and we can safely ignore the off-diagonal elements of 

MU. The up-quark masses are then 

and 

me = g44v, 

mt = 933~, 

mtl = g22v. 

With these approximations, the eigenvalue equation for Md yields 

mbmb’ = mtmttn2 - v’(hi, + hi, + hi,), 

m.mbmb# E m.mmt~t?-- Ku2[mt(h:, + hi,).+ m&L], 

mdm,m.$mbt CZ m,m.mtmpn4 - n2v2 m,mthf, + fn,mrh:4 + m,m,h&] .(4.4) 
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The quark mixing matrix has the approximate form (in units u = 1) 

VCX 

1 mu-** 
h 

* mr-rm, *mr-=mq 
r-4 ha -w 

h,, 1 * -h,. 
m.--cm, ml%,-m. Ml,,-m. 

-hr. cm,-ml -(WP&,-m*) 1 & cm, -m, 
hrr m, hs. hr. =m,,-m, 

* him,, -m,, -(fi-,r-m,q h ~m*,-m,, 
ha. m,, h.. h., LT*,-na,, 

1 

(4.51 

A few remarks are in order on the masses of the t, b’ and t’ quarks in the model. 

The approximateequality mb/mt u mbJ/me when combined with the PETRA lower 

bound of 22 GeV on the heavy quark masses and the upper bound resulting from the 

measurement of the electroweak p parameter severely constrains mt,rnb, and me. 

If we choose a conservative value of 300 GeV for the upper bound from p parame- 

ter[ lo], we have 

mt ,mb# 5 43 GeV (4.6) 

where we used mb = 5.3 GeV at the scale 1 GeV and took account of QCD correc- 

tions with Aooo =lOO MeV. A recent and more complete analysis of the neutral 

current processes indicates that the upper bound on the quark masses may be con- 

siderably smaller - in the neighborhood of 200 GeV[lG]. If we choose it to be 

225 GeV, for example, the bound eq. (4.6) re d uces to 32 GeV. Both the top and 

the b’ quark should then be obsenrable at TRISTAN which is indeed an exciting 

possibility. 

In order to get an idea of the kind of mixing matrix predicted by the model, we 

present two typical examples. The light quark mssses defined at the energy scale 1 

GeV are chosen to be [is] 

mu = 5.1 MeV, m, = -1.35 GeV, 

m, = -175 MeV, mb = 5.3 GeV, (4.7) 

and QCD corrections are taken into account with Aeon = 100 MeV. The mixing 

matrix is rather sensitive to md defined at 1 GeV which ere chosen differently for 

the two cases. ml,rnb, and m, given below are the physical masses. 
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case (a): md = 9.56 MeV, mt = 30 GeV, mbl = -35 GeV, rntg = -235 GeV. 

i 

0.976 -0.220 3.22x10-' Q.lUxlO-" 

VZ 
0.220 0.975 0.043 -0.014 

-9.79x10-3 -0.042 0.999 

2.98~10-~ 0.013 5.33x10-4 1.00 I 

5.31x10-~ . 
(4.8) 

Case (b): md = 10 MeV, mt = 30 GeV, mbl = -25 GeV, rntn = -184 GeV. 

VE 

I 

0.974 -0.226 4.54x10-4 1.19x10-~ 

0.225 0.972 0.059 -0.011 

-0.014 -0.057 0.998 

2.52~10-~ 0.011 5.81x10-4 1.00 I 

8.26x10-~ . 
(4.9) 

Note that in both the cases the fourth generation mixing into the second generation 

is the largest, the reason for which is obvious from the form of the maSs matrices 

eq (4.1). The value of the matrix element 1 V, 1 is predicted to be - 10-4, two 

orders of magnitude below the present experimental bound. A direct measurement 

of 1 V,,b 1 can thus confirm or rule out the model. 

By permuting the generation indices in the mass matrices of eq. (4.1), it is 

possible to obtain three more independant models. (i.e., we may, for example, 

identify the Srst row with the third generation, etc.) However, we gee by analysis 

similar to the above that all these cases lead to umealiitic mining matrices - either 

the Cabibbo angle is predicted to be too small or 1 V, 1 ia predicted to be great= 

than 1 Vd 1 in contradiction with experiment. 

NOW we turn to Model B defined by the ma.58 matrices 

M,, = 

CJllV hl+ 0 hw’ 
h;,w* gzzu hzsw’ o 

0 h;,w’ gjsv h%w* 

h;,iu’ 0 h&w* gr4v I 

Md = m,(U ++ W) . 

I 

(4.10) 

Such a model is studied in detail in Ref. 11 and we shall only summarize the 

main results and compare them against the predictions of Model A. With the same 
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approximations ss for Model A, Model B yields the msss relation 

Ifi- mbfmbl 

me mt+mtl 
(4.11) 

yielding an upper bound of 58 GeV on the 5’ quark mass. The third and the fourth 

generations mix even in the lit of zero first and second generation masses. This 

implies that I’**, can be even as high BS 0.3 in contrast to Model A. Furthermore, 

Vcp is smaller than Vdt and V,, in the model. Recall that Model A had Va larger 

than V,t and Vtb,. A crucial test which can distinguish the two models is a direct 

measurement of 1 Vd I. Model B predicts it to be - 10m3, an order of magnitude 

larger than the prediction of Model A. If the top quark is not discovered below 45 

GeV or so, Model A will be ruled out while Model B may still stand some chance. 

V. Conclusions 

In this paper we have carried out a systematic investigation of all possible hor- 

izontal symmetries in left-right symmetric gauge theories with a minimal Higgs 

sector and four generations of fermions. Although horizontal symmetries are quite 

powerful in constraining the parameters of the model, there is no convincing argu- 

ment as to what the correct symmetry is. We hope that a general analysis such 

as the one presented here will help gain deeper insight into the problems of family 

replication and mixing angle hierarchy. 

We have shown that there are only two consistent models with realistic predic- 

tions on the quark mssses and mixing angles in the case of four generations. 2, is the 

unique symmetry group which leads to these models. The phenomenology of the two 

models is studied in Section IV. Both the models predict mt, mbJ 2 50 GeV, rqt 2 

180 GeV. They differ in the mixing of the fourth generation into the first three. 

In one of the models, the fourth generation mixes preferentially with the second, 

whereas in the other it mixes with the third generation. A direct measurement of 

1 Vd 1 can distinguish the two models. Accelerator experiments planned for the 

neaf future will tell us which one of the two, if either, is the correct description of 

Nature. 
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Appendix 

Jn thii Appendix, we prove the lemma stated in Section III viz., in order that 

none of the generations decouple and that the symmetry be nontrivial, there must 

exist a bssis where KL and Kn are simultaneously diagonal in the miniial model. 

The invariance of the Langrangian under the horizontal symmetry implies 

Kirl& = emiarl , K$?~KR = ei”rz , (A-1) 

or 

[rf,KL]=[r;,KR]=o (i=1,2) . (A.4 

Due to eq. (A.2), in a basis where P: is diagonal KL and KR will be block-diagonal 

depending on the degeneracy of Pi. Clearly for a nondegenerate Pi there exists a 

basis where KL and KR are diagonal. 

Consider the csse of a two-fold degenerate I’:. In a basis where I’: is diagonal 

KL and KR will have the form 

KL = KL = 

-- -- -- __ 

I eVr 0 
0 

-- -- -- __ 
, 

KR = 

k I 0 

i ( 0 
-- -- -- __ 

I ei7r 0 

0 

1 0 ei- 

(A.31 
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where k and k are 2x2 unitary matrices. We make a basis transformation so that 

KL is diagonal without altering the form of KR: 

KL = diag [eial, #a, ,iOa, ,+] 

Tr has the general form 

r, = 

with 2x2 hermitian G. 

G I 0 
-- -- -- -- 

l 933 0 
0 

I 0 944 

(A.4) 

(A.5) 

If ~“~1 = ei*s, KR can be diagonalized. Hence consider eifll # #a. From eq. 

(A.l) we have 
h13 = ei(7r--BI-“)h13 , 

h14 = ,ih-!%-a’)h14 , 

hz3 = eihl--8.-“)h23 , 

h,4 = ,i~7~-F’r-)h33 , 
bw 

and 

hi3 iI1 + hi3 izl = h;3e’(m+Ba) , 

h;, iI1 + h;, izl = h;,e++@~) , 

h;3 i,, + hi3 iz2 = h;,&+@~) , 

h;, iI2 + h;, i,, = h;4ei(n+Bd) . (A.7). 

From eq. (A.6) it follows that h13h23 = h14hz4 = 0 since ei@l # d&. If h13 = h14 = 

O,h&r = h&l = 0 from eq. (A.7). Ch oosing h23 = h24 = 0 will result in a 

block-diagonal I’2 resulting in decoupling of families. Hence i2, = 0 in which case 

KR is diagonal. NOW let h13 = hz4 = 0. Then h;,kzl = h;,& = 0. Again the only 

consistent choice is irl = iI2 = 0 for no decoupling. Similarly hs3 = h14 = 0 and 

hs3 = h24 = 0 also give either decoupling of families or iIa = &r = 0. This proves 
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that KL and KR can be simultaneously diagonalized for the case of a two-fold 

degenerate Pi. 

Now consider the case of a twice two-fold degenerate P:. In this case we can 

6nd a basis where 

eiba 0 I \ 

I 0 

0 @ I 
KL= -- __ __ -- __ _- -- , 

1 k33 ks. 
0 I 

\ I km ku , 

KR = 

- 
kn hz I 

I 0 

km kzz I 
-- -- -- -- -- -- -- 

l eii8 0 

0 I 
I 0 &74 

with 2x2 hermition Gr and Gr. Then eq. (A.l) implies 

h14ein = ei(T*-bl)h14, hzleim = ,h-h)h,, 

h13ei” = &a-@dh,,, hzsei” = eihs--Bdh33. 

64.8) 1 

(A-9) 

Note that at least one among hl4, h24, hi3, hg3 has to be nonsero for generation 

decoupling not to occur. 

Let eifll = @J in which case KR can be diagonalized. If ci’u = ei7a, KL can also 

be diagonaliied proving the lemma. For ei’* # ei7*, from eq. (A.9) we have 

hhr # 0, h = hz3 = 0. (A.lO) 
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Using 

h;,e’” = e”l (k&hi3 + k;,h;,) (All) 

we see that k,s = 0 and hence KL is also diagonal. Similarly if eisl # .?A, eiv. = 

eivr, KL and Ks are simultaneously diagonalizable. We are left with the case 
Eve # ,ih, &IS + eiv4 in which case from eq. (A.9) 

hl, # 0, hl3 = h33 = h2, = 0 

without loss of generality. From eq. (A.l) we then have 

(A.12) 

k&, = k&, = k,&, = 0. (A.13) 

The only solution is krr = i,s = 0 in which case KL and Ka are diagonal. Thii 

proves the lemma for the case of twice two-fold degenerate I?:. 

Finally, consider the case of three-fold degenerate T:. (As discussed in the text, 

a four-fold degenerate I?: leads to trivial mixing matrix and is ruled out.) By virtue 

of eq. (A.2) one can find a basis where 

KL = &g [@ , #, @, @] , 

KR = (A.14) 

with 3x3 unitary i and hermition G. Chrly if eiB1 = ei@a = @I, Kn can also be 

diagonalized. Eq. (A.l) results in 

hl@ = hlleh-8d, huei- = h2rei(74-8d, h3@ = h3rei(7d-Bsj. (A.15) 

For all families to mix-at least one of h 14, hzt or h3( must be nonsero. Consider 
&Jl # &% = ,ih. Then by a unitary transformation in the 2-3 plane i can be 
brought to 

(A.16) 
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Furthermore, from eq. (A.15) either hl, = 0, hz,hs, # 0 or hl, # 0, h2, = h3, = 0. 

Consider hl, = 0. Using 

h:,ei” = C-iP4 (h;,j& + h;,ill + h&is,,) , (A.17) 

we Se? that h41 = 0. Since e”a = e’pa, KR can be diagonal&d m this csse. Similarly 

if AI, # 0, h2, = ha = 0, with 

h’ eiu = e-@’ (h&3 + h;3i23 + h&) , h;,eia = e+a (h$,, + h;,i22 + ~tj,i~~) , 3, 

it follows that irr = &s = 0. Again KR can be diagonal&d. 

(A.181 

If eipl # eipz # eipa, we have from eq. (A.15) hl, # 0, h2, = ha = 0. Then 
using eq. (A.18) we see that irs = ir3 = 0, or 

(A.19) 

With this simplified form of KR, we have 

h;,e’” = h;2ei(71-Pd, g;2e-i= = g;2e$'7~-P2), 

&,e'" = h;3ei(71-8a), g;3e-i- = g;,ei(7~-P8). (A.20) 

Clearly hlzh13 = 0, gIag13 = 0 from above. Furthermore one among h12, hIa, gr2,g13 

must be nonsero, or else the first and fourth families will decouple from the second 

and third. Consider hl2 # 0. Then from 

h&’ = c-~” (hlzkzz + h13 ~ ), 32 (A.21) 

it follows that 1 &I= I, or KR is diagonal. Similarly grr # 0 yields the same result. 

Thii completes the proof of the lemma. 
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